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a b s t r a c t

We propose an optimal design for supplementing flexible structures with a set of

absorbers and piezoelectric devices for vibration confinement and energy harvesting.

We assume that the original structure is sensitive to vibrations and that the absorbers

are the elements where the vibration energy is confined and then harvested by means of

nents is formulated as a dynamic optimization problem in which the objective function

is the total energy of the uncontrolled structure. The locations, masses, stiffnesses, and

damping coefficients of these absorbers and capacitances, load resistances, and

electromechanical coupling coefficients are optimized to minimize the total energy of

the structure. We use the Galerkin procedure to discretize the equations of motion that

describe the coupled dynamics of the flexible structure and the added absorbers and

harvesting devices. We develop a numerical code that determines the unknown

parameters of a pre-specified set of absorbers and harvesting components. We input a

set of initial values for these parameters, and the code updates them while minimizing

the total energy in the uncontrolled structure. To illustrate the proposed design, we

consider a simply supported beam with harmonic external excitations. Here, we

consider two possible configurations for each of the additional piezoelectric devices,

either embedded between the structure and the absorbers or between the ground and

absorbers. We present simulations of the harvested power and associated voltage for

each pair of collocated absorber and piezoelectric device. The simulated responses of the

beam show that its energy is confined and harvested simultaneously.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have seen the emergence of many developments in the field of so-called smart structures; that is,
structures incorporating sensors and actuators coupled with a calculator and are able to control dynamic systems subject
to external excitations. Among the many types of materials that can be found in nature, piezoelectric materials have a good
ability of electromechanical conversion and small sizes, which simplify their use in widely dynamic structure applications.
Recently, the piezoelectric material is used to harvest energy from excited structures. Energy harvesting or energy
scavenging is the process by which energy is captured and stored. A variety of different sources exist for harvesting energy,
such as solar power, thermal energy, wind, and kinetic energy.
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The use of piezoelectric materials to harvest power has already become popular. In the literature, a significant number
of studies developed accurate models and discussed in great details the fundamentals of these materials and their usage to
harvest energy. These studies include the works of Sodano et al. [1], Feenstra et al. [2], Shahruz [3], Stephen [4], Ng and Liao
[5], Cornwell et al. [6], Yoon et al. [7], Lefeuvre et al. [8], Liu et al. [9], Beeby et al. [10], Swallow et al. [11], Sari et al. [12],
Sodano et al. [13,14], Williams and Yates [15], Mateu and Moll [16], Sodano et al. [17], and Lesieutre et al. [18]. Sodano and
Inman [19] provided a review of modern techniques for power harvesting of vibrations using piezoelectric materials and
discussed their everyday applications. They concluded that the use of piezoelectric materials is the major method of
harvesting energy. Sodano et al. [1] developed a model of the piezoelectric material power harvesting device. This model
simplifies the design procedure for determining the appropriate size and vibration levels necessary for sufficient energy to
be produced and supplied to the electronic devices. An experimental verification of the model was also performed
to ensure its accuracy. Sodano et al. [17] investigated three types of piezoelectric devices and experimentally tested them to
determine their abilities to transform ambient vibration into electrical energy and their capabilities to recharge a
discharged battery. Stephan [4] analyzed the extraction of energy from a vibrating environment in some details. He
deduced that, for both direct mass (force) and base excitation, the maximum power flow into the device depends on the
vigor of the environment (frequency and amplitude of force or base) and the size of the device.

Stephan [4] and Jeon et al. [20] modeled the damping coefficient to be the sum of mechanical and electrical terms.
Stephan [4] noted that maximum power is delivered to an electrical load when its resistance is equal to the sum of the coil
internal resistance and the electrical analog of the mechanical damping coefficient. Sodano et al. [13] claimed that the
process of generation and dissipation of eddy current causes the system to function as a viscous damper. They developed a
model for one eddy current damping system and showed that it is effective in the suppression of transverse beam vibrations.
Lesieutre et al. [21] investigated the damping added to a structure due to the removal of electrical energy from the system
during power harvesting. They first estimated the damping using analytical methods and later verified it experimentally.

Wu and Wang [22] investigated the feasibility of utilizing eigenvector assignment and piezoelectric circuitry for
enhancing vibration isolation performance of periodic isolators. They used this strategy to reduce the transmissibility of the
isolator modes near the boundary of the stop bands, thereby widening the effective frequency range of vibration
suppression of the periodic isolator. The integrated system with assigned eigenvectors redistributes the vibratory energy of
the complete electromechanical system. Small vibration at the attenuated end of the isolator is achieved because the
energy is confined in the circuitry and other parts of the isolator. Yoon [23] proposed a full-state feedback control strategy
to confine the vibratory motion of flexible structures. He used small segments of piezoelectric film as sensors. The proposed
approach was demonstrated by an experiment in which two piezoelectric patch actuators confine the vibration of a
pinned–pinned beam using two piezoelectric polyvinylidene fluoride (PVDF) patches as sensors.

Yigit and Choura [24] and Choura and Yigit [25,26] developed a strategy for active control of vibrations by confinement.
Their strategy consists of assigning the eigenstructure (both eigenvalues and eigenvectors) of flexible structures for the
purpose of simultaneous confinement and suppression of vibrations where the modal matrix plays a key role in the energy
redistribution. Such strategy guarantees both vibration confinement and structural stability. Ouled Chtiba et al. [27]
discussed hybrid control of seismically excited structures by vibration confinement. Their control strategy consists of
adding bracing elements as the nonsensitive elements of the modified structure. Then active controllers were used to
remove the vibration energy from the floors and transfer it to the bracing elements. Ouled Chtiba et al. [28] developed a
strategy of vibration confinement that transforms an LQR-based active controller to an equivalent passive controller. They
demonstrated that both control strategies lead to similar structural performance.

Following Ouled Chtiba et al. [29], the current study is concerned with the confinement and harvesting of vibrations in
flexible structures by adding a set of collocated absorbers and piezoelectric elements. The proposed design aims at transferring
the vibration energy from the flexible structure to the absorbers and confining it into these elements. We collocate at each
absorber a piezoelectric device to store the cultivated electrical power into batteries. The problem of confining and harvesting
vibrations is formulated as a dynamic optimization problem whose solution provides a set of absorber parameters (masses,
locations, stiffnesses, and damping coefficients) and piezoelectric elements (electromechanical coupling coefficients,
capacitances and loaded resistances). The objective function, associated with the optimization problem, minimizes the total
energy (strain and kinetic) of the uncontrolled structure. With the aid of the Matlab optimization toolbox, we develop a
computer code that outputs a set of optimized mechanical and electrical parameters. In particular, we use the fmincon

command, which uses the sequential quadratic programming as an optimal integrator, and the ode15 s command, as a linear
solver of the ordinary-differential equations that govern the dynamics of the modified structure.
2. Electromechanical model

We develop a mathematical model of the electromechanical system formed of a set of mass-damper-spring absorbers
and piezoelectric devices. Several mechanical architectures of vibration-based power generators are possible. In the case of
piezoelectric generators, energy conversion is maximized by a maximum deformation of the piezoelectric material. This
explains why most of the reported devices are optimized for working at a resonance frequency [4]. Near a resonance
frequency, a single degree-of-freedom absorber gives a good description of a vibrating structure. And in most cases, the
problem can be simplified by considering only one vibration mode. If the mechanical structure is vibrating with little
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Fig. 1. Model of an absorber including a piezoelectric element.
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displacements for which the motion remains linear, then the structure including the piezoelectric element can be simply
modeled by the mass-damper-spring-piezo device shown in Fig. 1.

Following Lefeuvre et al. [8], we consider the piezoelectric element to be a disk with a rigid mass m bonded on its top
side. The bottom side of the disk is bonded on a reference rigid base. In addition, the stiffness and losses of the mechanical
part are, respectively, modeled by a spring ka and viscous damper ca. The rigid mass ma is subject to the action of both
external and internal forces. The external force Fa results from the mechanical excitation applied to the structure. The
internal force can be separated into a restoring force FP due to the piezoelectric element, a restoring force due to the spring,
and a viscous force due to the damper.

We let z be the mass displacement and Qp and V be, respectively, the output electrical charge and voltage across the
electrodes of the piezoelectric element. For a piezoelectric disk, the constitutive equations relating the stress Tp and
electrical induction Dp to the strain Sp and electric field Ep, are

Tp ¼ cE
33Sp � e33Ep (1a)

Dp ¼ e33Sp þ eS
33Ep (1b)

where cE
33 is the elastic rigidity in short circuit configurations, e33 is the piezoelectric coefficient, and eS

33 is the clamped
permittivity. The equations relating the mechanical variables (z and FP) to the electrical variables (Qp and V) are

Fp ¼ KPEzþ yV (2a)

Qp ¼ yz� CpV (2b)

where Ep, Sp, Qp, Fp, KPE, Cp, and y are defined by

Ep ¼ �
V

ep
; Sp ¼

z

ep
;Qp ¼ ApDp; Fp ¼ ApTp (3a)

KPE ¼
cE

33Ap

ep
;Cp ¼

eS
33Ap

ep
;y ¼

e33Ap

ep
(3b)

Here, KPE is the stiffness of the piezoelectric element when it is short-circuited, Cp is the clamped capacitance, y is its
electromechanical coupling coefficient, and ep is the thickness. The equivalent stiffness for both of the mechanical absorber
and the piezoelectric element is given by

k ¼ KPE þ ka (4)

Substituting the piezoelectric force (Eq. (2a)) and mechanical forces of the absorber and noting that V ¼ C�1
p Qp yields the

absorber dynamical equation

ma €z þ ca _z þ kazþ Fp ¼ ma €z þ ca _z þ kzþ yC�1
p Qp ¼ Fa (5)

The voltage output of the system across the load resistance R is defined by V ¼ R _Q p. Eq. (2b) simplifies to

R _Q p � C�1
p yzþ C�1

p Qp ¼ 0 (6)

Solutions of Eqs. (5) and (6) yield the electric response of the absorber-piezo system.
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3. Dynamic optimization

We consider an electromechanical system composed of a flexible structure and a set of collocated absorbers and
piezoelectric devices. This coupled dynamics is described by the following discretized model:

Ms 0

0 Ma

" #
€X s

€X a

" #
þ

Cs Csa

CT
sa Ca

" #
_X s

_X a

" #
þ

Ks Ksa

KT
sa Ka

" #
Xs

Xa

" #
�

0

YC�1
p

" #
Q ¼

Fs

Fa

" #
(7a)

R _Q � C�1
p YT

ðXa �FXsÞ þ C�1
p Q ¼ 0 (7b)

where Ms, Cs, and Ks are the m�m mass, damping, and stiffness matrices of the unaltered flexible structure, respectively; Xs

is the m�1 structural displacement vector; Ma, Ca, and Ka are the n�n mass, damping, and stiffness matrices of the added
absorbers, respectively; Csa and Ksa are the m�n damping and stiffness coupling matrices, respectively; Xa is the n� 1
absorber displacement vector; Fs and Fa are the external loading vectors associated with the structure and absorbers,
respectively; Y is the n�n electromechanical coupling matrix; Cp is the n�n capacitance matrix; R is the n�n loaded
resistance matrix; Q is the n�1 charge vector; and F is a n�m transformation matrix. The matrix F is zero in case the
piezoelectric elements are placed between the absorber masses and ground and nonzero if they are placed between the
absorber masses and the flexible structure.

System (7) can be put in the following first-order form

_X s

_X a

€X s

€X a

_Q

2
6666664

3
7777775
¼

0 0 Im�m 0 0

0 0 0 In�n 0

�M�1
s Ks �M�1

s Ksa �M�1
s Cs �M�1

s Csa 0

�M�1
a KT

sa �M�1
a Ka �M�1

a CT
sa �M�1

a Ca M�1
a YC�1

p

�R�1C�1
p YTF R�1C�1

p YT 0 0 �R�1C�1
p

2
66666664

3
77777775

Xs

Xa

_X s

_X a

Q

2
6666664

3
7777775
þ

0

0

M�1
s Fs

M�1
a Fa

0

2
6666664

3
7777775

(8)

where the vector _Q represents the current outputs of the piezoelectric elements.
Dynamic modeling of most engineering processes results in a set of differential equations. The dynamic optimization of

these processes examines their performance under transient conditions and optimizes it by maximizing or minimizing a
performance index subject to operating constraints. Applications of dynamic optimization include determination of the
controller parameters, which is essential for the design and control of structural engineering systems. The solution is
carried out in the full space of variables. However, this method results in a nonlinear problem with a large number of
variables and nonlinear equality and inequality constraints.

In the last decades, several studies used dynamic optimization to develop robust controllers. Tanartkit and Biegler [30]
presented a simultaneous approach for dynamic optimization by discretizing the variables through collocation on finite
elements. They considered solution of the nonlinear programming problem through a reduced Hessian successive
quadratic programming approach. Cervantes and Biegler [31] solved the dynamic optimization problem using a reduced-
space successive quadratic programming algorithm. The system is stabilized without imposing new boundary conditions.
Richard et al. [32] used dynamic optimization to adapt a 3-DOF robot to a pre-defined trajectory, which has mechanical
constraints. Santos and Biegler [33] developed a strategy, based on nonlinear programming sensitivity, to establish stability
bounds on the plant/model mismatch for a class of optimization-based model predictive control algorithms. They derived a
sufficient condition for robust stability of the controllers. Ouled Chtiba et al. [29] designed a set of dynamic absorbers to
confine the vibrational energy of the unaltered structure. These absorbers are formulated as a dynamic optimization
problem in which the objective function is the total energy of the uncontrolled structure.

In the current study, we formulate and then solve a dynamic optimization problem that outputs a set of mechanical and
electrical parameters of the added absorbers and piezoelectric elements. In particular, we minimize the total energy
(kinetic and strain energies) of the unaltered structure, which is considered to be sensitive to vibration, to confine and
harvest the vibration energy in the added absorbers. Without loss of generality, the problem is formulated as follows:

min
pa

J ¼
1

2

Z tf

0
ð _X

T

s Ms
_X s þ XT

s KsXsÞdt

subject to

_X s

_X a

€X s

€X a

_Q

2
6666664

3
7777775
¼

0 0 Im�m 0 0

0 0 0 In�n 0

�M�1
s Ks �M�1

s Ksa �M�1
s Cs �M�1

s Csa 0

�M�1
a KT

sa �M�1
a Ka �M�1

a CT
sa �M�1

a Ca M�1
a YC�1

p

�R�1C�1
p YTF R�1C�1

p YT 0 0 �R�1C�1
p

2
66666664

3
77777775

Xs

Xa

_X s

_X a

Q

2
6666664

3
7777775
; 8t 2 ½0; tf � (9)
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gðpaÞr0

hðpaÞ ¼ 0

pL
arparpU

a

Xsð0; paÞ ¼ X0ðpaÞ

Xað0;paÞ ¼ Z0ðpaÞ

Q ð0; paÞ ¼ Q0ðpaÞ

where J is the objective function, g is the constraint inequality, h is the constraint equality, X0 is the initial displacement
vector of the unaltered structure, Z0 is the initial absorber displacement vector, Q0 is the initial charge vector, t is time, and
tf is the final time. Here, we aim at determining a set of optimized parameters pa by minimizing the total energy of the
dynamical system subject to the dynamical differential equations without inequality. Here, pL

a and pU
a are the lower and

upper bound vectors of the absorber and piezoelectric parameters. The resulting optimized absorbers and piezoelectric
elements must guarantee vibration confinement in the added absorbers and harvesting the confined energy.

To demonstrate the viability of the proposed dynamic optimization approach, we consider the vibration confinement
and harvesting of a simply supported beam of flexural rigidityEI, mass par unit length rA, and length L. We equip the beam
with a set of n sets of collocated absorbers and piezoelectric elements, as shown in Fig. 2. The masses, spring stiffnesses,
damping coefficients, and locations are designated by mi, ki, ci, and xi ði ¼ 1;2; . . . ;nÞ. The variables wðx; tÞ and zi denote,
respectively, the transverse vibration of the beam and the displacement of the ith absorber. Here, we consider two cases of
piezoelectric element configurations: embedding the piezoelectric elements between the beam and absorber masses
(Fig. 3) and between the ground and the absorber masses (Fig. 4).
x

m1 

k1 c1 
…. 

mn 

kn cn 

x1 xn 
w (x, t) 

z1 zn 

Fig. 2. Beam equipped with absorbers.

x

m1 

k1 c1 

�1 

Cp1 

…. 

mn 

kn cn 

�n 

Cpn 
Rn 

x1 xn 
w (x, t)

z1 zn 

R1 

Fig. 4. Configuration 2: piezoelectric elements between the absorber masses and the ground.

x

m1 

k1 c1 �1 

Cp1 

R1 …. 

mn 

kn cn �n 

Cpn 

Rn 

x1 xn 

w (x, t)

z1 zn 

Fig. 3. Configuration 1: piezoelectric elements between the absorber masses and the beam.



ARTICLE IN PRESS

M. Ouled Chtiba et al. / Journal of Sound and Vibration 329 (2010) 261–276266
4. Configuration 1

In this case, the piezoelectric elements are embedded between the beam and the absorber masses. The equations of
motion that describe the coupled dynamics of the beam-absorber-piezoelectric system of Fig. 3 are given by

EI
q4wðx; tÞ

qx4
þ rA

q2wðx; tÞ

qt2
¼ �

Xn

i¼1

kiðwðxi; tÞ � ziÞ þ ci
qwðxi; tÞ

qt
� _zi

� �� �
dðx� xiÞ (10a)

mi €zi þ ci _zi þ kizi �
yi

Cpi
Qi ¼ kiwðxi; tÞ þ ci

qwðxi; tÞ

qt
for i ¼ 1;2; . . . ;n (10b)

Ri
_Q i �

yi

Cpi
ðzi �wðxi; tÞÞ þ

Qi

Cpi
¼ 0 for i ¼ 1;2; . . . ;n (10c)

where dðxÞ is the Dirac delta function, yi is the electromechanical coupling coefficient, Ri is the loaded resistance, and Cpi is
the capacitance of the ith piezoelectric element. The set of mechanical and electrical parameters ðmi; ci; ki; xi;Ri;Cpi; andyiÞ

are determined using dynamic optimization.
The key idea of the proposed design is to transfer the total energy of the unaltered structure to the added elements and

then harvest it. The total energy of the beam is given by

EbðtÞ ¼ TbðtÞ þ UbðtÞ ¼
1

2
EI

Z L

0

q2oðx; tÞ
qx2

 !2

dxþ
1

2
rA

Z L

0

qoðx; tÞ
qt

� �2

dx (11)

In the current case, the problem of dynamic optimization is formulated as follows:

min
micikixiyiCpiRi

Z tf

0
EbðtÞdt (12)

subject to system (10), which corresponds the equality constraints of the dynamic optimization problem.
We equip the beam with a set of absorbers and piezoelectric elements, as shown in Fig. 3. Jacquot [34] treated this

system, without harvesting devices, for steady-state vibration optimization. We first apply the Galerkin method to
discretize the governing equations and associated boundary conditions using the first m beam mode shapes. Consequently,
the displacement wðx; tÞ at location x along the beam and time t is expressed as

wðx; tÞ ¼
Xm

h¼1

jhðxÞqhðtÞ (13)

where qhðtÞ and jhðxÞ denote, respectively, the hth generalized displacement and mode shape. For a simply supported
beam, the normalized mode shapes are given by

jhðxÞ ¼

ffiffiffi
2

L

r
sin

hpx

L
(14)

corresponding to the hth natural frequency oh given by

oh ¼
h2p2

L2

ffiffiffiffiffiffiffi
EI

rA

s
(15)

Substituting Eq. (13) into Eqs. (10) yields

EI
Xm

h¼1

qhðtÞjiv
h ðxÞ þ rA

Xm

h¼1

€qhðtÞjhðxÞ ¼ �
Xn

i¼1

ki

�Xm

h¼1

½qhðtÞjhðxÞ � zi�dðx� xiÞ

�

�
Xn

i¼1

ci

�Xm
h¼1

½ _qhðtÞjhðxÞ � _zi�dðx� xiÞ

�
(16a)

mi €zi þ ci _zi þ kizi �
yi

Cpi
Qi ¼ ki

Xm

h¼1

qhðtÞjhðxiÞ þ ci

Xm
h¼1

_qhðtÞjhðxiÞ for i ¼ 1;2; . . . ;n (16b)

Ri
_Q i �

yi

Cpi

�
zi �

Xm

h¼1

qhðtÞjhðxiÞ

�
þ

Qi

Cpi
¼ 0 for i ¼ 1;2; . . . ;n (16c)

Multiplying Eqs. (16) by ð1=rAÞjrðxÞ and integrating the resulting equation from 0 to L leads to

€qrðtÞ þo2
r qrðtÞ ¼ �

Xn

i¼1

ki

�Xm

h¼1

qhðtÞjhðxiÞjrðxiÞ � zijrðxiÞ

�
=rA�

Xn

i¼1

ci

�Xm

h¼1

_qhðtÞjhðxiÞjrðxiÞ � _zijrðxiÞ

�
=rA (17)
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The equations of motion, described by Eqs. (16b) and (17), can be put in the following matrix form:

€Y þ C _Y þ KY ¼ F (18)

where

YT ¼ ½q1 q2 . . . qm z1 z2 . . . zn�; F
T ¼ 01�m

y1

Cp1
Q1

y2

Cp2
Q2 . . .

yn

Cpn
Qn

� �

and the mass, damping, and stiffness matrices are given by

C ¼
YD �

V

rA

�M�1
a VT M�1

a D

2
64

3
75;K ¼ YS �

G

rA

�M�1
a GT M�1

a B

2
64

3
75 (19)

YD ¼
1

rA

Xn

i¼1

ciYi;Yi ¼

j2
1ðxiÞ j2ðxiÞj1ðxiÞ . . . jmðxiÞj1ðxiÞ

j1ðxiÞj2ðxiÞ j2
2ðxiÞ . . . jmðxiÞj2ðxiÞ

^ ^ & ^

j1ðxiÞjmðxiÞ . . . jm�1ðxiÞjmðxiÞ j2
mðxiÞ

2
66664

3
77775

V ¼

c1j1ðx1Þ c2j1ðx2Þ . . . cnj1ðxnÞ

c1j2ðx1Þ c2j2ðx2Þ � � � cnj2ðxnÞ

^ ^ & ^

c1jmðx1Þ c2jmðx2Þ . . . cnjmðxnÞ

2
66664

3
77775;D ¼

c1 0 . . . 0

0 c2 & ^

^ & & 0

0 . . . 0 cn

2
6664

3
7775

B ¼

k1 0 . . . 0

0 k2 & ^

^ & & 0

0 . . . 0 kn

2
66664

3
77775;YS ¼ Oþ

1

rA

Xn

i¼1

kiYi;O ¼

o2
1 0 . . . 0

0 o2
2 & ^

^ & & 0

0 . . . 0 o2
m

2
66664

3
77775

G ¼

k1j1ðx1Þ k2j1ðx2Þ . . . knj1ðxnÞ

k1j2ðx1Þ k2j2ðx2Þ � � � knj2ðxnÞ

^ ^ & ^

k1jmðx1Þ k2jmðx2Þ . . . knjmðxnÞ

2
66664

3
77775;Ma ¼

m1 0 . . . 0

0 m2 & ^

^ & & 0

0 . . . 0 mn

2
6664

3
7775

and N ¼ mþ n. We put Eqs. (18) and (16c) in the following first-order form:

_U
_Q

" #
¼

A11 A12

A21 A22

" #
U

Q

" #
(20)

where

UT ¼ ½YT _Y
T
�;A11 ¼

0 I

�K �C

� �
;A12 ¼

0ðNþmÞ�n

B12

" #
;A21 ¼ ½B21 C21 0n�N�

A22 ¼ �

1

R1Cp1
0 . . . 0

0
1

R2Cp2
& ^

^ & & 0

0 . . . 0
1

RnCpn

2
66666666664

3
77777777775
;B12 ¼

y1

m1Cp1
0 . . . 0

0
y2

m2Cp2
& ^

^ & & 0

0 � � � 0
yn

mnCpn

2
66666666664

3
77777777775

B21 ¼ �

y1

R1Cp1
j1ðx1Þ

y1

R1Cp1
j2ðx1Þ . . .

y1

R1Cp1
jmðx1Þ

y2

R2Cp2
j1ðx2Þ & &

y2

R2Cp2
jmðx2Þ

^ & & ^
yn

RnCpn
j1ðxnÞ

yn

RnCpn
j2ðxnÞ . . .

yn

RnCpn
jmðxnÞ

2
66666666664

3
77777777775
;C21 ¼

y1

R1Cp1
0 . . . 0

0
y2

R2Cp2
& ^
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In case the beam damping is of the proportional type; that is,

G ¼ aIm�m þ bO (21)

where a and b are real, the augmented damping matrix simplifies to

C ¼
GþYD �

V

rA

�M�1
a VT M�1

a D

2
64

3
75 (22)

We set the damping coefficients

ci ¼ 2xi

ffiffiffiffiffiffiffiffiffiffi
miki

p
(23)

where xi is the damping coefficient of the ith absorber, as equality constraints. For a simply supported beam, jhðxÞ is given
by Eq. (14) and the dynamic optimization problem simplifies to

min
micikixiyiCpiRi

Z tf

0

rA

2
ð _q2

hðtÞ þo
2
hq2

hðtÞÞdt (24)

subject to
_U
_Q

" #
¼

A11 A12

A21 A22

" #
U

Q

" #

ci � 2xi

ffiffiffiffiffiffiffiffiffiffi
miki

p
¼ 0

kLrkirkU

cLrcircU

mLrmirmU

xLrxirxU

yLryiryU

CL
prCpirCU

p

RLrRirRU for i ¼ 1;2; . . . ;n (25)

5. Configuration 2

In this case, the piezoelectric elements are embedded between the ground and the absorber masses. The equations of
motion are given by

EI
q4wðx; tÞ

qx4
þ rA

q2wðx; tÞ

qt2
¼ �

Xn

i¼1

kiðwðxi; tÞ � ziÞ þ ci
qwðxi; tÞ

qt
� _zi

� �� �
dðx� xiÞ (26a)

mi €zi þ ci _zi þ kizi �
yi

Cpi
Qi ¼ kiwðxi; tÞ þ ci

qwðxi; tÞ

qt
for i ¼ 1;2; . . . ;n (26b)

Ri
_Q i �

yi

Cpi
zi þ

Qi

Cpi
¼ 0 for i ¼ 1;2; . . . ;n (26c)

and the problem of dynamic optimization is formulated as follows:

min
micikixiyiCpiRi

Z tf

0
EbðtÞdt (27)

subject to Eq. (26). Similarly, using proportional damping, we find that the dynamics of the augmented structure can be
described by

_U
_Q

" #
¼

A11 A12

A21 A22

" #
U

Q

" #
(28)

where U, A11, A12, and A22 remain the same and A21 becomes

A21 ¼ 0n�m C21 0n�N
	 


Finally, the dynamic optimization problem consists of Nþn ordinary-differential equations as linear equality constraints
and n nonlinear equality constraints. Fig. 5 shows a flowchart of the proposed algorithm for solving the dynamic
optimization problem. During the flow of energy within the structure, the absorbers experience larger vibration
amplitudes, and, thus, a system for energy harvesting is integrated to convert the mechanical energy into electrical power.
This conversion was largely investigated by studies, such as those by Sodano et al. [1], Onoda et al. [35], Lefeuvre et al. [8]
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Fig. 5. Flowchart of the dynamic optimization algorithm.

Table 1
Optimized mechanical parameters of the controlled structure with 3, 4 and 5 modes.

Optimized parameters m1 (kg) m2 (kg) m3 (kg) k1

(N/m)

k2

(N/m)

k3

(N/m)

x1 (m) x2 (m) x3 (m) c1

(N s/m)

c2

(N s/m)

c3

(N s/m)

First configuration

3 modes 0.0951 0.0902 0.0951 1570.4 1022.4 1572.2 0.4999 0.5002 0.5000 0.2444 0.1921 0.2446

4 modes 0.0951 0.0905 0.0951 1570.4 1022.4 1572.2 0.4676 0.4843 0.4681 0.2444 0.1921 0.2446

5 modes 0.0951 0.0905 0.0951 1570.4 1022.4 1572.2 0.4676 0.4843 0.4681 0.2444 0.1924 0.2446

Table 2
Optimized piezoelectric parameters of the controlled structure with 3, 4 and 5 modes.

Optimized parameters y1 (C/m) y2 (C/m) y3 (C/m) Cp1 (mF) Cp2 (mF) Cp3 (mF) R1 (O) R2 (O) R3 (O)

First configuration

3 modes 0.01 0.01 0.01 1.00 1.00 1.00 1eþ5 1eþ5 1eþ5

4 modes 0.01 0.01 0.01 1.00 1.00 1.00 1eþ5 1eþ5 1eþ5

5 modes 0.01 0.01 0.01 1.00 1.00 1.00 1eþ5 1eþ5 1eþ5
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and Faiz et al. [36]. The addition of absorbers and piezoelectric elements can also be used for the purpose of improving
damping of the original structure.

6. Simulations and discussion

We consider a simply supported beam of length L ¼ 1 m, density r ¼ 2700 kg=m3, Young’s modulus E ¼ 7� 1010 N=m2,
second moment of area I ¼ 4:167� 10�9 m4, and cross-section area A ¼ 5� 10�4 m2. We add three sets of collocated
absorbers and piezoelectric elements at locations xi ði ¼ 1;2;3Þ (see Figs. 3 and 4). We developed a computer code that uses
the fmincon command in Matlab to determine a local optimized solution. The command ode15 s numerically integrates the
discretized set of ordinary-differential equations subject to upper and lower bounds on the parameters of the absorbers
and piezoelectric elements.

We emphasize that the optimized parameters of the absorbers must be insensitive to the number of modes considered
in the approximation of the beam dynamics. To prove this, we ran our code for different numbers of modes (3, 4 and 5) and
x1 ¼ x2 ¼ x3 ¼ 1 percent. The resulting sets of mechanical and electrical parameters are displayed in Tables 1 and 2,
respectively. Whereas the electrical parameters are unchanged, we note that the mechanical parameters are not
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significantly changed as the number of modes is varied from 3 to 5. Also, Figs. (6–10) display performances of the beam-
absorber system for 3 modes (solid—blue), 4 modes (dashed—red), and 5 modes (dotted—black). We note that the time
responses of the beam and absorbers are not significantly altered as the number of modes is varied from 3 to 5.
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Fig. 6. Uncontrolled displacement of the beam midpoint associated with configuration 1 using 3 modes (solid—blue), 4 modes (dashed—red), and 5

modes (dotted—black). (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)
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Fig. 7. Controlled displacement of the beam midpoint associated with configuration 1 using 3 modes (solid—blue), 4 modes (dashed—red), and 5 modes

(dotted—black). (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)
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Fig. 8. Displacement of the first absorber associated with configuration 1 using 3 modes (solid—blue), 4 modes (dashed—red), and 5 modes

(dotted—black); x1 ¼ 1%. (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)
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Fig. 9. Displacement of the second absorber associated with configuration 1 using 3 modes (solid—blue), 4 modes (dashed—red), and 5 modes

(dotted—black); x2 ¼ 1%. (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)
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Fig. 10. Displacement of the third absorber associated with configuration 1 using 3 modes (solid—blue), 4 modes (dashed—red), and 5 modes

(dotted—black); x3 ¼ 1%. (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

Table 3
Optimized mechanical parameters of the controlled structure using 3 modes.

Optimized parameters m1 (kg) m2 (kg) m3 (kg) k1 (N/m) k2 (N/m) k3 (N/m) x1 (m) x2 (m) x3 (m) c1 (N s/m) c2 (N s/m) c3 (N s/m)

First configuration 0.0951 0.0931 0.0951 1570.4 1022.4 1572.2 0.4999 0.4999 0.5000 0.7332 0.5855 0.7337

Second configuration 0.0951 0.095 0.0951 1570.4 1022.4 1572.2 0.5000 0.5001 0.5001 0.7332 0.5914 0.7337
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Using a three-mode approximation, we first optimize the total energy of the beam subject to the set of ordinary-
differential equations, which describe the proportionally damped dynamics of the beam-absorber-piezo system in the first
configuration (see Fig. 3). Then, we optimize the same energy subject to the set of ordinary-differential equations, which
describe the proportionally damped beam-absorbers-harvesting system in the second configuration (see Fig. 4). For the
damping of the beam-absorber system, we let a ¼ 2:1664 and b ¼ 3:4926� 10�5 to produce x1 ¼ 0:01, x2 ¼ 0:012, and
x3 ¼ 0:0236 (first three damping ratios of the beam). We also select damping ratios of the absorbers as x1 ¼ x2 ¼ x3 ¼ 0:03,
given in Eq. (23). To check the viability of the design, we set all initial conditions equal to zero and consider the external
harmonic excitations FiðtÞ ¼ 50 sin 130t ði ¼ 1;2Þ applied at x1 ¼ ð1=3ÞL and x2 ¼ ð2=3ÞL in both configurations.

The resulting optimized parameters of the absorbers are summarized in Table 3 for the both configurations. Table 4
summarizes the resulting electrical parameters. We note that a different set of mechanical and electrical parameters is
obtained for each case. We first display the time response of the beam midpoint without absorber-piezo systems in Fig. 11a.
With the addition of the passive elements, Figs. 11b–e show the displacement of the beam midpoint and those of the
absorbers for the first configuration. We note that the vibration energy is confined in the absorbers and then harvested by
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Fig. 11. Displacement of the damped beam midpoint and absorbers associated with configuration 1; (a) uncontrolled beam midpoint; (b) controlled beam

midpoint; (c) first absorber; (d) second absorber; (e) third absorber; x1 ¼ x2 ¼ x3 ¼ 3%.

Table 4
Optimized piezoelectric parameters of the controlled structure using 3 modes.

Optimized parameters y1 (C/m) y2 (C/m) y3 (C/m) Cp1 (mF) Cp2 (mF) Cp3 (mF) R1 (O) R2 (O) R3 (O)

First configuration 0.01 0.0075 0.01 1.00 5.00 1.00 1eþ5 1eþ5 1eþ5

Second configuration 0.0075 0.01 0.0075 5.00 1.00 5.00 1eþ5 1eþ5 1eþ5
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the piezoelectric devices. At time t ¼ 0:9 s, the vibration energy of the beam is suppressed (Fig. 11b). Figs. 12a–f show the
harvested powers (Pi for i ¼ 1;2;3) and the piezoelectric voltages ðVi for i ¼ 1;2;3Þ for excitation case 2 and configuration 2.
We observe that the maximum harvested powers occur between the time period [0 0.8] s.

Table 5 gives the eigenvalues and frequencies of the controlled damped structure associated with the second excitation
case and the first configuration. We note that all real parts of the eigenvalues are negative, and thus the altered structure is
asymptotically stable. The first three frequencies of the uncontrolled beam are 145.1, 580.3 and 1305.6 rad/s and the first
three frequencies of the controlled beam are 180.7, 580.2 and 1308 rad/s. We note that the first frequency of the controlled
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Fig. 12. Harvested powers and piezoelectric voltages of the vibration energy associated with configuration 1: (a) first piezoelectric power, (b) second

piezoelectric power, (c) third piezoelectric power, (d) first piezoelectric voltage, (e) second piezoelectric voltage, (f) third piezoelectric voltage.
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beam is increased, while the other two frequencies are hardly changed. Before their addition, the frequencies of absorbers
are 104.8, 128.5 and 128.58 rad/s. After addition, these frequencies are lowered to 94.5, 114.2 and 128.6 rad/s. This implies
that, for simultaneous confinement and harvesting, the beam must be stiffened and the absorbers must be softened to
allow the transfer of vibration energy.

In the presence of absorbers and piezoelectric elements, Fig. 13 shows the displacement of the beam midpoint in the
both configurations. We note that the second configuration yields faster extraction of vibration energy, which is clearly
confined in the absorbers and then harvested.
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Fig. 13. Controlled displacement of the beam midpoint associated with piezoelectric configuration 1 (dashed—red); piezoelectric configuration 2

(solid—blue). (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)
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Fig. 14. Controlled displacement of the beam midpoint associated with piezoelectric configuration 1; optimized parameters (solid—blue); perturbed

parameters (dashed—red). (For interpretation of the references to color in this figure legend, the reader is referred to the webversion of this article.)

Table 5
Eigenvalues of the controlled damped structure associated with piezoelectric configuration 1.

Beam Absorbers Harvesting system

Eigenvalues Frequencies Eigenvalues Frequencies Frequencies

before adding

Eigenvalues Frequencies

�5.27180.6i 180.7 �2.4794.5i 94.5 104.8 �20 20

�77580.2i 580.2 �3.57114.1i 114.2 128.5 �94 94

�32.471307.6i 1308 �4.27128.5i 128.6 128.58 �94 94
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In the presence of passive elements and harvesting systems, Figs. 14 and 15(a, b, c) display the displacements of the
beam midpoint and the three absorbers, respectively, associated with the second case of excitation and the first
configuration of the piezoelectric elements. Fig. 16 shows the frequency responses of the beam midpoint with and without
control. It clearly demonstrates the effects of the absorbers in attenuating the vibrational energy in the sensitive beam. To
compare performance of the optimized and nonoptimized structures, we perturb the optimized stiffnesses by 10 percent.
We observe that the vibration energy is better confined in the optimized case (solid—blue) as compared to the perturbed
case (dashed—red). They are given by k0

1 ¼ 1:7274 kN=m, k0
2 ¼ 1:1246 kN=m, k0

3 ¼ 1:7294 kN=m. We verified that
the computer code yielded the same set of optimized parameters, which are listed in Table 3—configuration 1 and
Table 4—configuration 1.
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Fig. 15. Displacement of the absorbers associated with piezoelectric configuration 1; optimized parameters (solid—blue); perturbed parameters

(dashed—red): (a) first absorber, (b) second absorber, (c) third absorber; x1 ¼ x2 ¼ x3 ¼ 3%. (For interpretation of the references to color in this figure

legend, the reader is referred to the webversion of this article.)

Fig. 16. Frequency responses of the controlled (solid) and uncontrolled (dashed) beam midpoint to a single excitation uðtÞ at L=3ðHðjwÞ ¼ wðL=2; jwÞ=uðjwÞÞ.
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7. Conclusions

We proposed a strategy for optimizing the parameters of a set of collocated pairs of absorbers and piezoelectric systems
for confining and harvesting the vibration of flexible structures. We formulated the design of these absorbers and
harvesting systems as a dynamic optimization problem in which the objective function is the total energy of the unaltered
structure. Using the Galerkin procedure, we discretized the dynamics of the structure equipped with the added absorbers
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and the piezoelectric systems. We wrote a Matlab code to optimize the locations, masses, stiffnesses, and damping
coefficients of the absorbers, and the capacitances, load resistances, and electromechanical coupling coefficients of the
piezoelectric elements to minimize the total energy of the original structure. We first supplied a set of initial values for
these parameters, and the code updated them while minimizing the total energy in the uncontrolled structure. We
simulated the performance of a simply supported beam with external excitations and showed that the vibration energy is
confined to the absorbers and then harvested as electric power.
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